

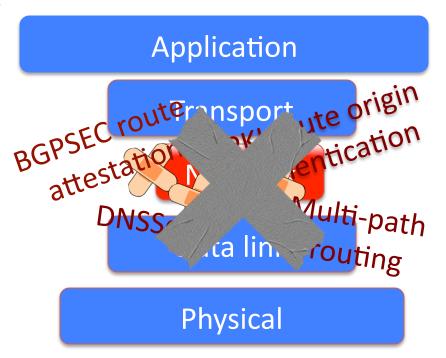
SCION:

Scalability, Control and Isolation On Next-Generation Networks

Current main team: Soo Bum Lee, Hsu-Chun Hsiao, Hyun Jin Kim, Yue-Hsun Lin, Sangjae Yoo, Adrian Perrig, Virgil Gligor

Previous members: Xin Zhang, Geoff Hasker, Haowen Chan, David Andersen

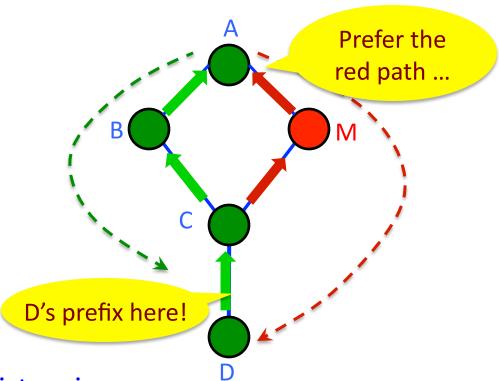
After years of patching, the Internet is still neither Reliable nor Secure!


Feb 2008: Pakistani ISP hijacks YouTube prefix

Apr 2010: A Chinese ISP inserts fake routes

affecting 15% of global traffic

Nov 2010: 10% of Internet traffic 'hijacked' to Chinese servers due to DNS Tampering.


- ❖ Fixes to date ad hoc, patches
- Inconvenient truths
 - ♦ S-BGP: delayed convergence
 - ♦ Global PKI: single root of trust

Fundamental BGP Limitations

Destination or ISP have no control over inbound paths

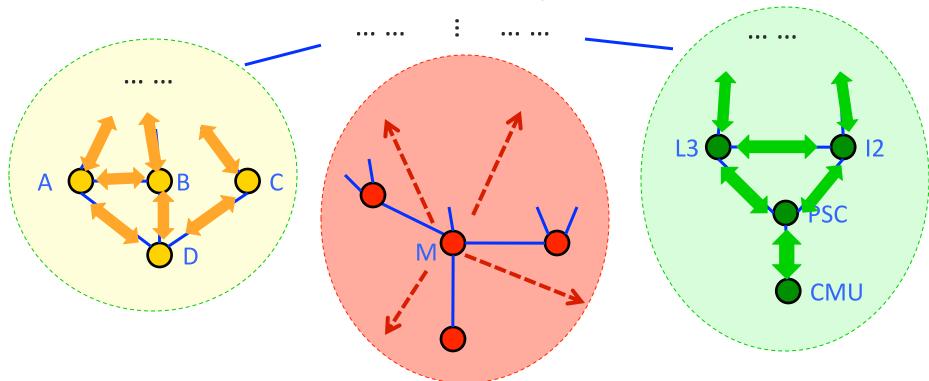
Route inconsistencies

♦ Forwarding state may be different from announced state

Fundamental BGP Limitations (cont'd)

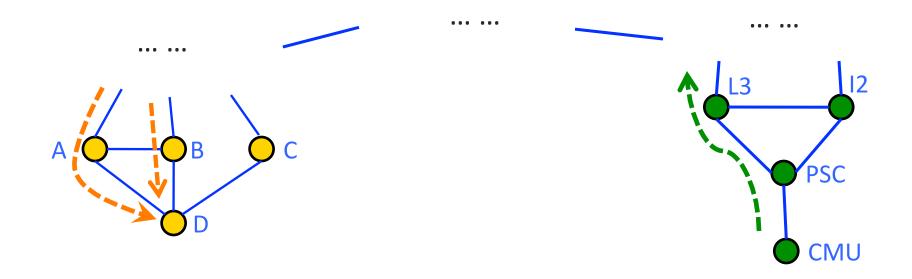
- Lack of routing isolation
 - ♦ A failure/attack can have global effects
 - ♦ Global visibility of paths is not scalable.
- Slow convergence / route oscillation
- Large routing tables
 - ♦ Multi-homing / flat namespaces prevent aggregation
- Lack of route freshness
 - ♦ Current (S-)BGP cannot prevent replay of old paths

Note that these issues are fundamental to (S)-BGP, they cannot be easily fixed by small changes!

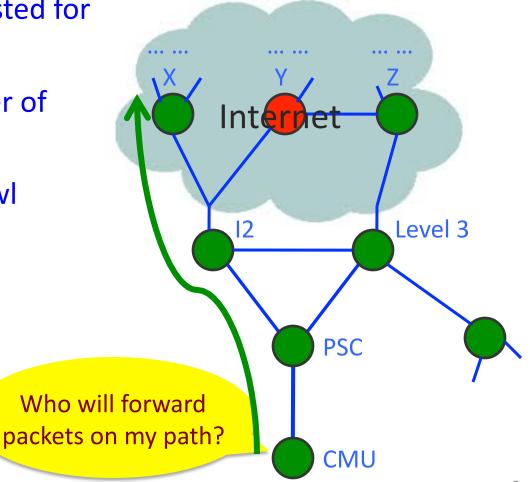

S-BGP Limitations

- Slow convergence
- Router outage causes high overhead
- Circular dependency between UPDATE message and connectivity with RPKI server
 - Route Origin Authentication (ROA), prefix certificate and BGPSEC router certificate needs to be downloaded to validate UPDATE message!
 - Rebooting Internet would be very slow as initial UPDATE messages cannot be validated
- Route flap dampening can be misused
 - Ensure an AS's updates are ignored
 - Prevent updates to fix a path
 - Potential to create a loop that persists

Wish List (1): Isolation

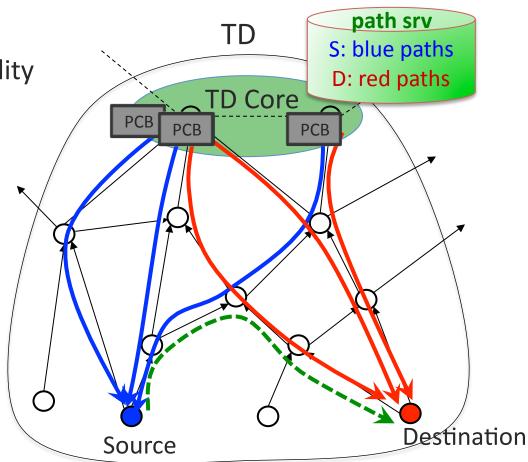

- Isolation of attacks and faults
- Scalable and reliable routing updates
- Operate with mutually distrusting entities without a global single root of trust: enforceable accountability

Wish List (2): Balanced Control


- ❖ ISPs, source and destination all need path control
- Challenges
 - What granularity of control is appropriate?
 - How to prevent attacks based on sender / receiver control?

Wish List (3): Minimal / Explicit Trust

- Clear who needs to be trusted for network operations
- Small TCB: minimal number of trusted entities
- Avoid transitive trust sprawl


SCION Architectural Goals

- High availability, even for networks with malicious parties
 - Communication should be available if attacker-free path exists
- Explicit trust for network operations
- Minimal TCB: minimize trusted entities for any operation
 - Strong isolation from untrusted parties
- Operate with mutually distrusting entities
 - No single root of trust
- Balanced route control for ISPs, receivers, senders
- No circular dependencies during setup: enable rebootability
- Simplicity, efficiency, flexibility, and scalability

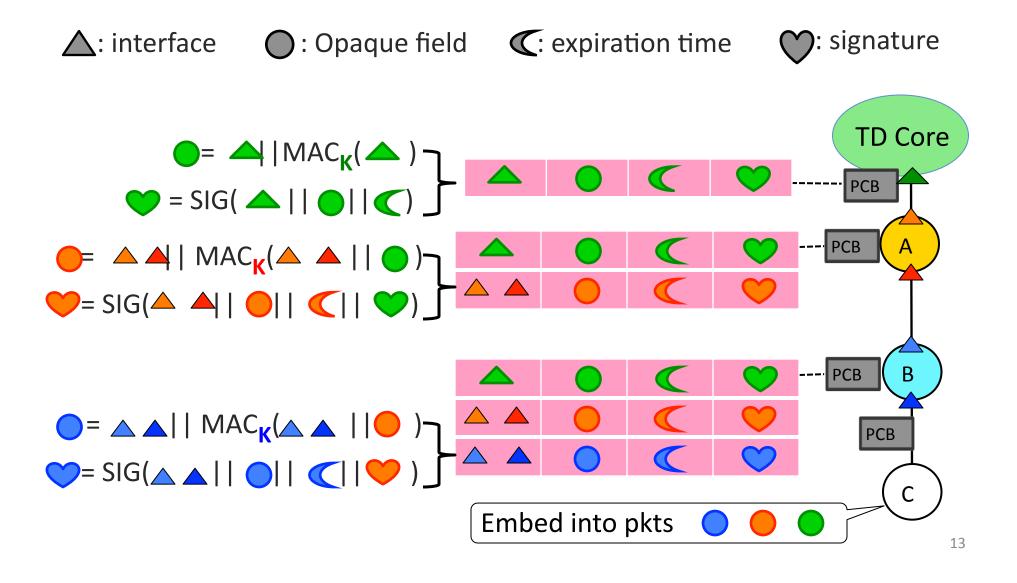
SCION Architecture Overview

- Trust domain (TD)s
 - ♦ Isolation and scalability
 - ♦ Enforceable accountability
- Path construction
 - → Path construction beacons (PCBs)
- Path resolution
 - ♦ Control
 - **♦** Explicit trust
- Route joining (shortcuts)
 - ♦ Efficiency, flexibility

Trust Domain Decomposition

- Global set of TD (Trust Domains)
 - ✓ Map to geographic, political, legal boundaries
 - ✓ Usually corresponds to a jurisdiction
 - ✓ Provide enforceable accountability
- TD Core: set of top-tier ISPs that manage TD
 - ✓ Route to other TDs
 - ✓ Initiate path construction beacons
 - ✓ Manage Address and Path Translation Servers
 - ✓ Handle TD membership
 - ✓ Root of trust for TD: manage root key and certificates
- AD: Autonomous Domain
 - ✓ Transit AD or endpoint AD

Path Construction


Goal: each endpoint learns multiple verifiable paths to its core

- Discovering paths via Path Construction Beacons (PCBs)
 - ✓ TD Core periodically initiates PCBs
 - ✓ ADs asynchronously propagate PCBs
- ADs perform the following operations
 - ✓ Collect PCBs

 - ✓ Update cryptographic information in PCBs
- Endpoint AD receives at least k PCBs from each neighbor AD, selects k down-paths to advertise

Path Construction (simplified)

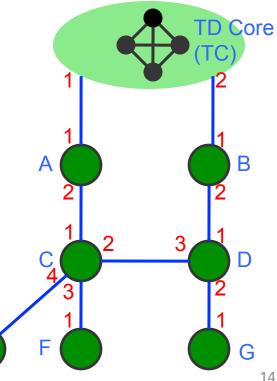
Path Construction

Interfaces: I(i) = *previous-hop interfaces* || *local interfaces*

Opaque field: O(i) = local interfaces || MAC over local interfaces and O(i-1)

Signature: $\Sigma(i) = \text{sign over } I(i), T(i), O(i), \text{ and } \Sigma(i-1), \text{ with cert of pub key}$

 $TC \rightarrow A$: I(TC): $\phi \mid |\{\phi, TC1\}\}$


O(TC): $\{\phi, TC1\} \mid |MAC_{Ktc}(\{\phi, TC1\} \mid | \phi)|$

 $\Sigma(TC)$: Sign($I(TC) \mid\mid T(TC) \mid\mid O(TC) \mid\mid \phi$)

I(A): $I(TC)|| \{A1, A2\}$ $A \rightarrow C$:

O(A): {A1, A2} || MAC_{Ka}({A1, A2} || O(TC))

 $\Sigma(A)$: Sign($I(A) \mid\mid T(A) \mid\mid O(A) \mid\mid \Sigma(TC)$)

Path Construction

Interfaces: I(i) = previous-hop interfaces || local interfaces

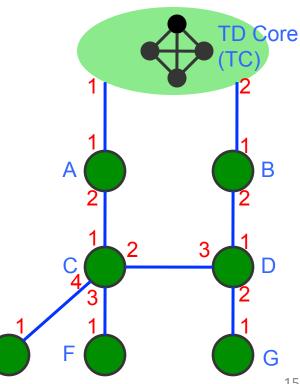
Opaque field: O(i) = local interfaces || MAC over local interfaces and O(i-1)

Signature: $\Sigma(i) = \text{sign over } I(i), T(i), O(i), \text{ and } \Sigma(i-1), \text{ with cert of pub key}$

C? – One PCB per neighbor

C→E: *I*(*C*): *I*(*A*)|| {*C*1, *C*4}

 $O(C): \{C1, C4\} \mid | MAC_{Ka}(\{C1, C4\} \mid | O(A)) \}$

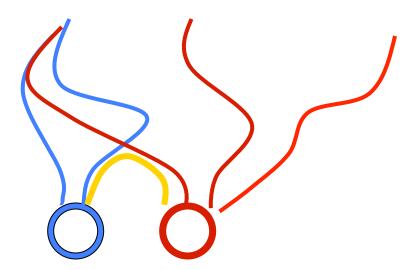

 $\Sigma(C)$: Sign($I(C) \mid\mid T(C) \mid\mid O(C) \mid\mid \Sigma(A)$)

Also include peering link!

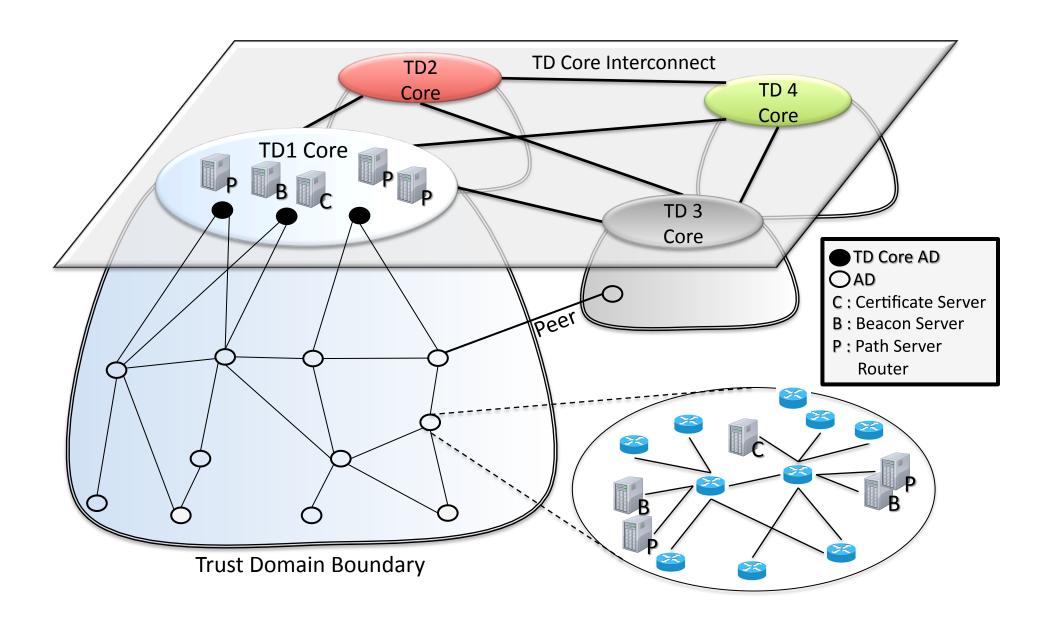
 $I_{C,D}(C)$: {C4,C2} || TD || AID_D

 $O_{C,D}(C)$: {C4, C2} ||MAC_{Kc}({C4, C2})

 $\Sigma_{C,D}(C)$: Sign($I_{C,D}(C) \mid\mid T_{C,D}(C) \mid\mid O_{C,D}(C) \mid\mid O(C)$)


Address-to-Path Resolution

- TD core path server provides address/path resolution
- Endpoints can have arbitrary addresses
 - IPv4, IPv6
 - Public key [AIP 2008]
- Each AD registers AD ID / k down paths at TD Core path server
 - Uses up-path to reach TD core
- Two stages for name resolution
 - Name → EID, AD ID
 - AD ID → k down paths



Route Joining

- Sender obtains receiver's k down-paths from path server
- Sender intersects its up-paths with receiver's down-paths
- Sender selects preferred routes based on k^2 options

Inter-TD Forwarding

- TD Cores recursively execute SCION beaconing to create paths amongst each other
 - Each TD core initiates PCB to neighboring TD cores
 - Propagates TD Core PCBs to create inter-TD-core path
- Endhosts can request paths to reach any other
 TD Core
- Endhosts combine up path + inter-TD-core path + down path
 - Provides explicit trust, as entire path is known

SCION Advantages

Security

- Isolation of data plane from control plane
 - Data plane still usable even if control plane disrupted
- Cryptographic validation of packet header
- Trust agility: local & selectable roots of trust (no global root of trust)
- Avoidance of BGP / IP attacks (blackhole, wormhole, etc.)
- No single point of failure
- Explicit trust for packet forwarding, small Trusted Computing Base (TCB)

Reliability

- Isolation between mutually untrusted network domains
- Multi-path forwarding, dozens of potential paths available
- ISP / sender / receiver controllable paths
- Instant convergence of routing protocol
- No route-flap dampening necessary

Efficiency

- Scalability: routing overhead independent on # of destinations
- Low energy forwarding: no TCAM for routing tables
- No routing / forwarding tables
- Low packet overhead

SCION Disadvantages

- Constant update of downpaths
- New protocols, new equipment
- Packet header larger than IP
- Static path binding
 - ✓ No automated route failure recovery

SCION Stakeholder Pros and Cons

Manufacturers

- ✓ Sale of additional equipment
- Commoditization: routers become simple and inexpensive

ISPs

- ✓ New revenue streams through service differentiation
- ✓ High-availability service offerings, powerful DDoS defenses
- ✓ Resilient to attacks and configuration errors
- ✓ Incremental update, only new edge routers needed, inexpensive routers
- New equipment, new protocols

Consumers

- ✓ High reliability and availability
- ✓ Differentiated services, path choice, trading off quality and price
- ✓ Trust agility
- ✓ Software / HW upgrade

Government

- ✓ High reliability and availability for critical services
- ✓ Selectable roots of trust, no single global root of trust
- ✓ Simple, verifiable router hardware

Resolved BGP / Control Plane Issues

- Lack of fault isolation
 - Error propagation, potentially to entire Internet, disruption of flows outside domain
 - Adversary can attract flows outside domain (blackhole attacks)
 - Black art to keep BGP stable, manual rule sets, unanticipated consequences
- Lack of scalability, amount of work by BGP is O(N), N number of destinations
 - Path changes need to be sent to entire Internet
- S-BGP requires single root of trust for AS and address certificates
- Dramatically higher router overhead during periods of route instability
 - Increased number of routing updates during DDoS attacks
- Slow route convergence
 - Convergence attack
 - Network may require minutes up to tens of minutes to converge
- Lack of freshness for BGP update messages
- Circular dependency of UPDATES and RPKI data
- Route flap dampening-based attacks

Resolved IP / Data Plane Issues

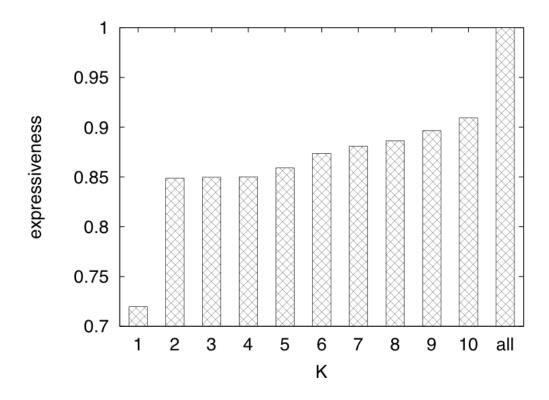
- Complex route table lookup for each packet
- Bursting routing tables
- Lack of predictability for path availability
- Lack of route choice/control by senders and receivers

Resolved IP / BGP / Misc. Issues

- No path predictability due to inconsistency between routing table and BGP updates
- No isolation between control and data planes (routing and forwarding)
 - By attacking routing, prevent forwarding to work correctly
- Huge TCB (entire Internet)
- Single root of trust for DNSsec
- Intermittent routing loops during BGP convergence, need TTL to avoid packet looping

Incremental Deployment

- Current ISP topologies consistent with SCION TDs
- Minor changes for ISPs
 - SCION edge router deployment
 - Beacon / certificate / path server deployment (1 host)
 - Regular MPLS forwarding internally
 - IP tunnels connect SCION to edge routers in different ADs
- Minor changes in end-domains
 - IP routing used for basic connectivity
 - SCION gateway enables legacy end hosts to benefit from SCION network


Evaluation

- Methodology
 - ♦ Use of CAIDA topology information
 - ♦ Assume 5 TDs (AfriNIC, ARIN, APNIC, LACNIC, RIPE)
 - ♦ We compare to S-BGP/BGP
 - Metric 1: additional path length (AD hops) compared to BGP
 - ♦ Without shortcuts: 21% longer
 - *♦ With* shortcuts:
 - o 1 down/up- path: 6.7% longer
 - o 2 down/up- path: 3.5% longer
 - 5 down/up- path: 2.5% longer

Evaluation (cont'd)

- Metric 2: Expressiveness
 - ♦ Fraction of BGP paths available under SCION

Related Work

Routing security

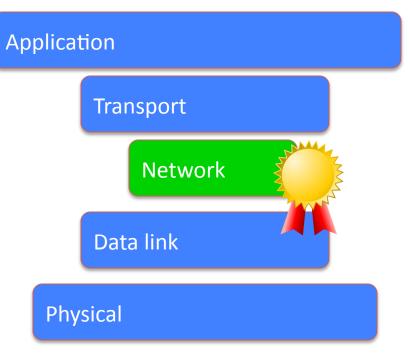
- ♦ S-BGP, soBGP, psBGP, SPV, PGBGP
- ♦ Only topological correctness; addressed a subset of attacks addressed in SCION
- H-NPBR provides robustness in Byzantine environments, but efficiency is a concern

Routing control

- ♦ Multipath (MIRO, Deflection, Path splicing, Pathlet), NIRA
- ♦ Only given control to the source, and/or little security assurance

Next-generation architectures

- ♦ HLP, HAIR, RBF, AIP, ICING/IGLOO
- → Focusing on other aspects (reducing routing churns and routing table sizes, enforcing routing policies, and providing source accountability)



SCION Conclusions

Basic architecture design for a nextgeneration network that emphasizes isolation, control and explicit trust

Highly efficient, scalable, available architecture

Enables numerous additional security mechanisms, e.g., network capabilities, DoS defenses

